Cwc23, an essential J protein critical for pre-mRNA splicing with a dispensable J domain.
نویسندگان
چکیده
J proteins are structurally diverse, obligatory cochaperones of Hsp70s, each with a highly conserved J domain that plays a critical role in the stimulation of Hsp70's ATPase activity. The essential protein, Cwc23, is one of 13 J proteins found in the cytosol and/or nucleus of Saccharomyces cerevisiae. We report that a partial loss-of-function CWC23 mutant has severe, global defects in pre-mRNA splicing. This mutation leads to accumulation of the excised, lariat form of the intron, as well as unspliced pre-mRNA, suggesting a role for Cwc23 in spliceosome disassembly. Such a role is further supported by the observation that this mutation results in reduced interaction between Cwc23 and Ntr1 (SPP382), a known component of the disassembly pathway. However, Cwc23 is a very atypical J protein. Its J domain, although functional, is dispensable for both cell viability and pre-mRNA splicing. Nevertheless, strong genetic interactions were uncovered between point mutations encoding alterations in Cwc23's J domain and either Ntr1 or Prp43, a DExD/H-box helicase essential for spliceosome disassembly. These genetic interactions suggest that Hsp70-based chaperone machinery does play a role in the disassembly process. Cwc23 provides a unique example of a J protein; its partnership with Hsp70 plays an auxiliary, rather than a central, role in its essential cellular function.
منابع مشابه
Pre-mRNA splicing in the absence of an SR protein RS domain.
SR proteins are essential pre-mRNA splicing factors that act at the earliest stages of splice-site recognition and spliceosome assembly, as well as later in the splicing pathway. SR proteins consist of one or two RNA-recognition motifs and a characteristic arginine/serine-rich C-terminal RS domain. The RS domain, which is extensively phosphorylated, mediates the subcellular localization of indi...
متن کاملThe evolution of science at the National Institutes of Health and the National Institute of Environmental Health Sciences.
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginineand serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain i...
متن کاملDeletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain...
متن کاملSpp382p interacts with multiple yeast splicing factors, including possible regulators of Prp43 DExD/H-Box protein function.
Prp43p catalyzes essential steps in pre-mRNA splicing and rRNA biogenesis. In splicing, Spp382p stimulates the Prp43p helicase to dissociate the postcatalytic spliceosome and, in some way, to maintain the integrity of the spliceosome assembly. Here we present a dosage interference assay to identify Spp382p-interacting factors by screening for genes that when overexpressed specifically inhibit t...
متن کاملThe WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo.
A growing body of evidence supports the coordination of mRNA synthesis and its subsequent processing events. Nuclear proteins harboring both WW and FF protein interaction modules bind to splicing factors as well as RNA polymerase II and may serve to link transcription with splicing. To understand how WW domains coordinate the assembly of splicing complexes, we used glutathione S-transferase fus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2010